Project Pitch and Proposal- Justin Maroney, Daisy Nolz, Shomit Barua, Ben Nandin

Motivation:

There are many motivations that inspired us to pursue this project. Our initial motivation was to determine a use for the solid waste created in the brewing process. After some research, we decided to pursue the idea of implementing this waste in the creation of a new, sustainable building material. This idea snowballed as we pushed ourselves to imagine more novel, innovative applications for our proposed material. We pulled inspiration from a number of other pre-existing projects and experiments to expand on our project and speculate on how we could combine all of these isolated ideas into a single, real-world vision for the future.

Related Work:

Green Roofs: https://greenroofs.org/about-green-roofs/

Brewing Waste as a Base for Clay Aggregates in Green Roofs: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459013/

Self-Healing Concrete: https://www.epo.org/learning-events/european-inventor/finalists/2015/jonkers.html

Density-Sensing Pycnometer: referenced in the Brewing waste aggregate report

Living Root Bridges: http://www.bbc.com/travel/story/20150218-indias-amazing-living-root-bridges

Our Idea:

Our proposed product is an organic construction material made from the waste material that results from the brewing process which uses the natural tensile strength of root systems as an adhesive. This material would be implemented in tangent with an embedded density-sensing technology that would allow for detection of wear and fatigue in the material. This data, along with the natural growth process of the root structures would allow for a completely automated preventive maintenance system. We speculate initially implementing this technology to build a brewery which uses its own waste products to sustain the building. Our long-term vision is to implement this technology on a larger scale in both urban and rural construction. Many of these same ideas have been explored separately in previous projects and technologies, but our project would bring all of these ideas together into a single technology with a tangible real-world application.

Impact:

We see our project having a possibly large impact. Environmentally, instead of dumping waste into our naturally occurring resources and changing or ruining them, the effect we envision is re-using that material to enrich buildings they come from thus attempting to actualize a self sustaining system. The goal is to switch engaging with the leftover material from waste to building materials for other uses. Ethically, the challenge will be convincing people that using what was once deemed “waste material” to construct or create new things is safe.

The impact on people will be a good one in that a system like this offers more jobs in the facility. It also creates a cleaner, more sustained environment for people to live in. Culturally, we are aware that the US still is not fully as accepting of drinking culture and alcohol has a stigma to some groups. The fact that people don’t agree with it does not change the fact that producers and consumers need to be responsible for the waste and impact it creates.

Implementation:

We are planning to do hands on work, attempting to separate the spent materials and use them on a smaller scale to prototype our designs. We also intend to speculate a larger model, right now the plan is to design the plan for a sustaining brewery that both produces and uses the spent grains used in its construction. We also intend to speculate various systems like government tax breaks for companies who use this strategy to be more environmentally conscious.  

Parts List*:

Plants (seeds and pregrown) 

Pots or trays to keep the experiment on.

One big bucket to try and purify water with evaporation (because its green).

Something that can compress our materials, or access to one.

*This is a rough list. Some more research is needed into our methods before we can solidify a more specific final materials list (See Timeline- Week 1)

Timeline:

Week 1(Apr 1-7): Finish experimental methods research, obtain necessary materials for starting construction, experimentation

Major Milestone: Have a clearly defined plan for experimentation process

Week 2(Apr 8-14): Start material construction/ experimentation

Major Milestone: Have samples of our material constructed

Week 3(Apr 15-21): Continue material construction/ experimentation, Start density sensing experimentation

Major Milestone: Have tangible result data for our preliminary testing

Week 4(Apr 22-28): Create final deliverable artifact, organize experimentation data

Major Milestone: Have our final deliverable completed and presentation-ready visualization of our experimentation data

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s